

MAIN

ПОКВАРТИРНОЕ ОТОПЛЕНИЕ

Благодаря битермическому теплообменнику котел MAIN отличается сверхкомпактными размерами (31,7х40х73 см), что гарантирует простоту и удобство установки котла в любых условиях ограниченного пространства.

Минимальные габаритные размеры котла обусловлены применением битермического теплообменника и чрезвычайно компактной конструкцией системы отвода продуктов сгорания.

полезная тепловая мощность

горячей воды в минуту

мини рабо мбар давл

минимальное рабочее давление газа

сверхкомпактные

размеры (см)

Встроенная система самодиагностики позволяет автоматически определять до 10 типов возможных сбоев в режиме работы системы отопления.

Котел **MAIN** адаптирован к российским условиям: устойчиво работает при низком давлении газа (до 5 мбар).

Котел **MAIN** оборудован электронной индикацией температуры, электронной защитой от образования накипи, системой защиты от замерзания.

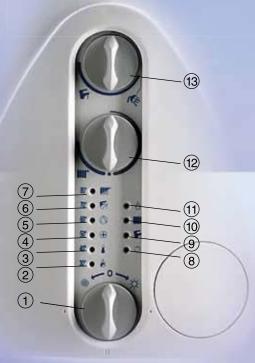
Котел **MAIN** является идеальным вариантом для применения в поквартирном отоплении и индивидуальных домах.

специальные тендерные цены

BAXI GROUP

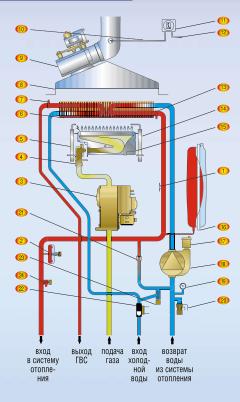
Представительство в РФ 129164, Россия, г. Москва Зубарев переулок, 15/1 Бизнес-центр "Чайка Плаза", офис 342 Тел.: (495) 733-95-82/83/84, 101-39-14 Факс: (495) 733-95-85 E-mail: baxi@baxi.ru

Настенный газовый котел с битермическим теплообменником


MAIN

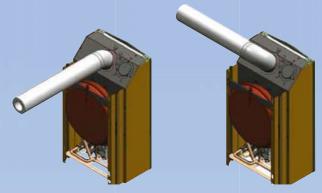
Благодаря битермическому теплообменнику и специально спроектированной системе отвода продуктов сгорания котел MAIN отличается сверхкомпактными размерами. Он разработан специально для применения в поквартирном отоплении и является идеальным вариантом для применения в многоэтажных домах (в том числе выше 5 этажей).

- Момпактные размеры
- Открытая/закрытая камеры сгорания
- Мощность 24 kW
- Битермический теплообменник


Панель управления котла MAIN

- 1 Переключатель режимов «Лето»-«Зима»-«Сброс»
- 2-7 «Немигающие» индикаторы показывают температуру в контуре отопления. «Мигающие» индикаторы
- 2-7 отражают сбои в работе
- 8 Индикатор наличия электропитания
- 9 Индикатор работы контура ГВС
- 10 Индикатор работы контура отопления
- 11 Индикатор наличия пламени
- 12 Ручка регулирования температуры в контуре отопления
- 13 Ручка регулирования температуры в контуре ГВС

Функциональная схема настенного котла «MAIN 24Fi» с закрытой камерой сгорания

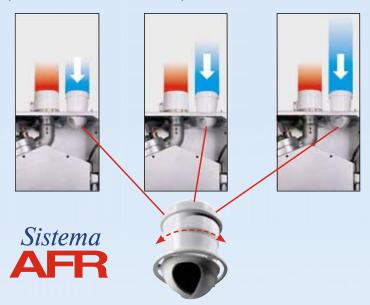


- 1 Предохранительный термостат перегрева
- 2 Прессостат минимального давления воды
- 3 Газовый клапан
- 4 рампа горепки с форсунками
- 5 Электрод зажигания
- 6 Единый битермический теплообменник
- 7 Датчик температуры контура ГВС
- 8 Дымовой колпак
- 9 Вентилятор
- 10 Точка замера отрицательного давления
- 11 Датчик тяги пневмореле
- 12 Точка замера положительного давления

- 13 Датчик температуры конура отопления
- 14 Датчик контроля пламени
- 15 Горелка
- 16 Расширительный бак
- 17 Автоматический воздухоотводчик
- 18 Циркуляционный насос с воздухоотводчиком
- 19 Манометр
- 20 Сбросной предохранительный клапан системы отопления (3 бара)
- 21 Автоматический байпас
- 22 Датчик протока воды контура ГВС
- 23 Кран заполнения системы отопления
- 24 Кран слива воды

Подсоединение дымоходов к настенным котлам «MAIN 24Fi» по коаксиальным трубам

Для отвода продуктов сгорания по коаксиальным трубам в качестве начального участка можно заказывать колено 45° (код KHG 71401681) градусов, или колено 90° код (KHG 714017810)


коаксиальное подсоединение с коленом 45°

коаксиальное подсоединение с коленом 90°

Минимальный рекомендуемый диаметр общего дымохода при совместной работе нескольких настенных котлов «MAIN 24Fi»

Количество котлов «MAIN 24 Fi» с единым дымоходом	При высоте дымовой трубы от верхнего котла		
	<u>≥</u> 3м	<u>≥</u> 6м	
2	150	140	
3	180	180	
4	200	180	
5	250	236	
6	250	236	
7	300	250	
9	300	300	

Система регулирования подачи воздуха AFR (запатентовано «BAXI»)

Система регулирования подачи воздуха AFR (запатентовано «BAXI»)

Система AFR улучшает характеристики работы и горения котла. Регулировка должна проводиться в соответсвии с техническим руководством котла, учитывая длину дымоотводящих труб.

Данная настройка нужна для оптимизации производительности котла и параметров сгорания. Муфту забора воздуха можно установить слева или справа от дымохода; ее можно поворачивать для регулирования потока воздуха в зависимости от суммарной длины воздуховода и дымохода. Для уменьшения потока воздуха необходимо повернуть ее по часовой стрелке, для увеличения - против часовой стрелки.

MAIN Настенные газовые котлы

ГАЗОВАЯ СИСТЕМА

- Непрерывная электронная модуляция пламени в режимах отопления и ГВС;
- Плавное электронное зажигание;
- Котлы адаптированы к росийским условиям. Устойчиво работают при понижении входного давления природного газа до 5 мбар;
- Рассекатели горелки пламени сделаны из нержавеющей стали;
- Запатентованная система регулирования подачи воздуха;
- Возможна перенастройка для работы на сжиженном газе.

ГИДРАВЛИЧЕСКАЯ СИСТЕМА

- Битермический термообменник;
- Высокоскоростной циркуляционный насос с автоматическим воздухоотводчиком;
- Манометр;
- Автоматический байпас;
- Постциркуляция насоса.

ТЕМПЕРАТУРНЫЙ КОНТРОЛЬ

- Диапазон регулирования температуры в системе отопления 35-80°C;
- Регулирование и автоматическое поддержание заданной температуры а контурах отопления и ГВС;
- Электронная индикация температуры;
- Возможность подключения комнатного термостата и програмируемого таймера.

УСТРОЙСТВА КОНТРОЛЯ И БЕЗОПАСНОСТИ

- Электронная система самодиагностики;
- Электронная защита от образования накипи;
- Ионизационный контроль пламени;
- Система защиты от блокировки насоса (включается каждые 24 ч);
- Защитный термостат от перегрева воды в теплообменнике:
- Датчик тяги для контроля за безопасным удалением продуктов сгорания;
- Прессостат в системе отопления срабатывает при недостатке давления воды;
- Предохранительный клапан в контуре отопления
- Система защиты от замерзания;
- Защита от блокировки насоса.

Технические характеристики		Main 24 Fi	Main 24 i
Максимальная потребляемая тепловая мощность		26,3	26,3
Минимальная потребляемая тепловая мощность		10,6	10,6
Максимальная полезная тепловая мощность		24	24
Минимальная полезная тепловая мощность		9,3	9,3
Максимальная производительность		90,3	90,3
Производительность при мощности 30%		88	88
Закрытая камера сгорания с принудительной вытяжкой		•	-
Расширительный бак л/бар		8/0,5	7/0,5
Максимальное давление в системе отопления		3	3
Диапазон регулирования температуры в контуре ГВС		35/55	35/55
Количество горячей воды при ΔT=25°C		13,7	13,7
Количество горячей воды при ΔT=35°C		9,8	9,8
Минимальный расход воды в контуре ГВС		2,5	2,5
Минимальное давление в контуре ГВС		0,2	0,2
Максимальное давление в контуре ГВС			8
Габаритные размеры: Высота	MM	730	730
Ширина	MM	400	400
Глубина	ММ	317	317
Диаметр газохода		-	120
Диаметр дымоотводящих труб (коаксиальных/раздельных)		60 - 100/80	-
Вес нетто		38,5	29
Тип газа		G20 - G30/G31	G20 - G30/G3
Номинальное входное давление газа для метана (G20)		20	20
Номинальное входное давление газа для сжиженного газа (G30/G31)		30/37	30/37
Напряжение		230	230
Потребляемая электрическая мощность	Вт	170	110

НОВАЯ СИСТЕМА ОТВОДА ПРОДУКТОВ СГОРАНИЯ - КОМПАКТНЫЕ РАЗМЕРЫ

Благодаря уникальной форме задней панели, котел Main 24 Fi имеет чрезвычайно компактную конструкцию системы отвода Данное продуктов сгорания. технологическое решение гарантирует удобство установки котла в любых условиях ограниченного пространства.

Поквартирное отопление от «BAXI»

Холдинг BAXI GROUP был основан в Англии в 1866 году. На сегодняшний день в его структуру входят более 30 заводов, расположенных в семи странах Западной Европы, с общим количеством сотрудников более 6000 человек. BAXI GROUP является одной из крупнейших и наиболее профессиональных компаний в области отопления и домашнего комфорта, занимая по количеству производимых отопительных систем третье место в Европе (1.000.000 котлов или 11% Европейского рынка). Общий оборот холдинга составляет более 1,3 миллиарда ЕВРО. Центром по производству настенных котлов внутри холдинга является итальянский завод BAXI SPA, производящий более 500.000 настенных котлов в год.

Поквартирное отопление (ПО) - децентрализованное (автономное) индивидуальное обеспечение отдельной квартиры в многоквартирном доме теплом и горячей водой. Наиболее дешевым вариантом поквартирного отопления является теплоснабжение с использованием в качестве источника энергии природного газа. ПО широко применяется в Европе. Наиболее развитыми странами в области использования ПО являются Италия и Англия, где ежегодно устанавливается около 1,0 и 1,5 миллионов настенных котлов соответственно.

Наиболее перспективным направлением развития ПО является применение бытовых газовых отопительных котлов в многоэтажные жилых домах. В этом случае в каждой квартире устанавливается настенный газовый двухконтурный котел, обеспечивающий и отопление, и горячее водоснабжение.

Внедрение и распространение систем ПО является одним из наиболее приоритетных направлений деятельности компании BAXI в России. Специально для поквартирного отопления компанией BAXI была разработана серия двухконтурных котлов MAIN мощностью 24 кВт. Минимальные габаритные размеры котла MAIN, уникальная форма задней панели и чрезвычайно компактная конструкция системы отвода продуктов сгорания гарантируют удобство установки котла в любых условиях ограниченного пространства российских кухонь. Помимо компактных размеров котел MAIN отличается современным дизайном и оборудован специальной электронной панелью управления с системой самодиагностики, которая позволяет автоматически определять 7 типов возможных сбоев и неисправностей в режиме работы системы отопления и ГВС. Для

удобства пользователей в котле предусмотрена электронная индикация температуры воды и манометр, показывающий давление воды в контуре отопления. В котле предусмотрена настройка максимальной мощности котла при работе на контур отопления в диапазоне от 24 до 9,3 кВт и присоединение комнатного термостата для автоматизации работы котла по температуре в комнате.

ПО призвано стать одним из эффективнейших направлений жилищно-коммунальной реформы в России. Госстрой России с 1999 года проводит эксперимент по строительству и эксплуатации многоэтажных домов с поквартирным отоплением. Дома с подобной системой теплоснабжения уже построены во многих городах РФ и с каждым днем география применения ПО расширяется. Это означает, что поквартирное отопление в России доказало свою эффективность и имеет широкие перспективы в решении проблем ЖКХ. На основании результатов опыта поквартирного отопления разработаны соответствующие СНиПы.

Для продвижения ПО в России представительством компании ВАХІ ведется огромная ознакомительная, разъяснительная и обучающая работа с различными заинтересованными организациями: проектными, монтажными, строительными, газоснабжающими, а также с органами местного управления в регионах и администрациями городов.

Проводятся семинары с участием ведущих специалистов проектных институтов (CAHTEX-

НИИПРОЕКТ, ГИПРОНИИГАЗ) в области поквартирных систем отопления.

Данная политика приносит свои плоды - котлы ВАХІ уже работают в многоэтажных домах во многих регионах России. Дома с поквартирным отоплением на котлах ВАХІ установлены в Брянске, Воронеже, Казани, Курске, Пскове, Смоленске, Твери, Ульяновске, Уфе, Чебоксарах и многих других городах. Котлы ВАХІ имеют высочайшее качество и полностью адаптированы к сложным Российским условиям.

Компания BAXI самым тесным образом сотрудничает с ведущими проектными российскими институтами (САНТЕХНИИПРОЕКТ, ГИПРОНИИГАЗ) в области поквартирных систем отопления. Регулярно совместно со специалистами этих институтов проводятся семинары, посвященные вопросам проектирования и устройства систем поквартирного отопления (ПО).

Надо отметить, что у компании BAXI уже накоплен богатый опыт эксплуатации настенных газовых котлов не только в средней полосе России, но даже в суровых условиях Крайнего Севера. Особенно важно, что котлы BAXI работают в Якутске безаварийно, начиная с 1998 года. Данный факт наглядно доказывает высочайшее качество оборудования BAXI, а также то, что котлы BAXI полностью адаптированы и прекрасно работают в сложных Российских условиях. Интересно отметить, что в Якутии помимо стандартных моделей котлов в поквартирном отоплении применяются также модели котлов со встроенным накопительным бойлером (серия NUVOLA).

Тем не менее, северные регионы России по-прежнему являются самыми сложными для внедрения систем ПО. Это связано с трудностями в расчетах и проектировании систем подачи воздуха и дымоудаления. Низкие температуры наружного воздуха создают повышенный риск образования конденсата и обмерзания воздуховодов и дымоходов.

С другой стороны, вопросы отопления стоят в этих регионах наиболее остро. В связи с этим в 2005 году компания ВАХІ заказала и полностью профинансировала институту ГИПРОНИИГАЗ (г. Саратов) расчет системы притока воздуха и дымоудаления для конкретного 5-ти этажного жилого дома с поквартирным отоплением в г. Якутске. Данный проект был выполнен в соответствии с имеющейся в России нормативной базой и с учетом накопленного опыта поквартирного отопления в условиях пониженных температур наружного воздуха. Проект является собственностью компании ВАХІ и доступен для ознакомления в представительстве компании в Москве.

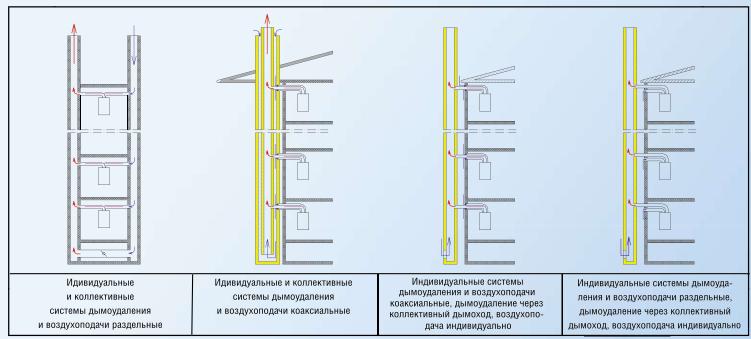
ПРЕИМУЩЕСТВА ПОКВАТРТИРНОГО ОТОПЛЕНИЯ:

Для конечным потребителей:

- Значительно снижается стоимость коммунальных услуг (горячая вода и отопление);
- Повышается уровень комфорта в квартирах потребитель сам устанавливает и регулирует климат в помещении;
- Снимается проблема перебоев в тепле и горячей воде по техническим, организационным и сезонным причинам;
- Потребитель сам определяет объем потребления энергии в зависимости от экономических возможностей и физиологических потребностей;
- Потребитель оплачивает только ту часть энергии, которую он фактически истратил;
- Потребитель сам участвует в инвестициях в капитальные затраты;
- Потребитель реально вовелекается в политику энергосбережения, стимулируя инвестиции как в систему теплоснабжения, так и в мероприятия по теплозащите ограждающих конструкций.

Для строительных организаций

- Поквартирное отопление значительно удешевляет жилищное строительство;
- Отпадает необходимость в дорогостоящих теплосетях, тепловых пунктах, приборах учета тепловой энергии;
- Появляется возможность жилищного строительства в районах, не обеспеченных развитой инфраструктурой тепловых сетей;
- Снимается проблема окупаемости системы отопления, так как погашение стоимости происходит в момент покупки жилья;


Для обслуживающих организаций

- Удобство техобслуживания, когда на одном объекте обслуживается 100-200 однотипных газовых котлов;
- Возможность замены трубопроводов, запорно-регулирующей арматуры и отопительных приборов в отдельных квартирах при перепланировке или аварийных ситуациях без нарушения режима эксплуатации систем отопления в других квартирах;
- Потребитель исправно платит за газ и сервисные услуги;
- Удобство оплаты за потребленные теплоресурсы по показаниям газового счетчика;
- Заинтересованность каждого потребителя в экономии энергоресурсов;

Для органов исполнительной власти:

- Экономия денежных ресурсов благодаря отсутствию теплоцентралей и тепловых пунктов;
- Экономия денежных ресурсов благодаря отсутствию дотаций на коммунальные услуги;
- Исключаются потери в тепловых сетях;
- Снимается проблема учета и оплаты тепловой энергии - обеспечение теплом и горячей водой перекладывается с государства на конечного потребителя (владельца жилья);
- Экономия энергоресурсов снижение затрат бюджетов разных уровней на топливно-энергетическое обеспечение;
- Существенное сокращение выброса вредных веществ в атмосферу улучшает экологическую обстановку в регионе.

ПРИМЕРЫ КОНСТРУКТИВНЫХ РЕШЕНИЙ СИСТЕМ ПОДАЧИ ВОЗДУХА И ДЫМОУДАЛЕНИЯ

БАКСИ GROUP Представительство в РФ 129164, Россия, г. Москва, Зубарев переулок, 15/1 Бизнес-центр "Чайка Плаза", офис 342 Тел.: (495) 733-95-82/83/84, 101-39-14 Факс: (495) 733-95-85

E-mail: haxi@baxi.ru

